Go to the MLX, M, PDF, or HTML version of this file. Go back to Introductory Mathematics for Economists with Matlab (bookdown site). Also see M4Econ and MEconTools.
Suppose that we can not hire fractions of workers, but have to hire 1, 2, 3, ... units of workers. What is the marginal product of each additional worker?
% fixed capital level
K = 1;
% current labor level
L = [1,2,3,4,5,6,7,8,9,10];
% Cobb Douglas Production Parameters
alpha = 0.5;
beta = 1-alpha;
% Output at x0
fx0 = (K^alpha)*(L.^beta);
% a vector of h
h = 1;
% output at fx0plush
x0plush = L+h;
fx0plush = (K^alpha)*((x0plush).^beta);
% derivatie
outputIncrease = (fx0plush - fx0)./h;
% Show Results in table
T = table(L', x0plush', fx0plush', outputIncrease');
T.Properties.VariableNames = {'L', 'x0plush', 'fx0plush', 'outputIncrease'};
disp(T);
L x0plush fx0plush outputIncrease
__ _______ ________ ______________
1 2 1.4142 0.41421
2 3 1.7321 0.31784
3 4 2 0.26795
4 5 2.2361 0.23607
5 6 2.4495 0.21342
6 7 2.6458 0.19626
7 8 2.8284 0.18268
8 9 3 0.17157
9 10 3.1623 0.16228
10 11 3.3166 0.15435
% Graph
close all;
figure();
hold on;
plot(L, outputIncrease);
scatter(L, outputIncrease,'filled');
grid on;
ylabel('Marginal Output Increase from each Additional Worker (h=1)')
xlabel('L, previous/existing number of workers')
title('Discrete Labor Unit, Marginal Product of Each Worker')
We know the MPL formula, so we can evaluate MPL at the vetor of L
% fixed capital level
K = 1;
% current labor level
L = [1,2,3,4,5,6,7,8,9,10];
% Cobb Douglas Production Parameters
alpha = 0.5;
% Output at x0
fprimeX0 = (1-alpha)*(K^alpha)*(L.^(-alpha));
T = table(L', outputIncrease', fprimeX0');
T.Properties.VariableNames = {'L', 'outputIncrease','fprimeX0'};
disp(T);
L outputIncrease fprimeX0
__ ______________ ________
1 0.41421 0.5
2 0.31784 0.35355
3 0.26795 0.28868
4 0.23607 0.25
5 0.21342 0.22361
6 0.19626 0.20412
7 0.18268 0.18898
8 0.17157 0.17678
9 0.16228 0.16667
10 0.15435 0.15811
Suppose we can not hire fractions of workers, but have to hire 1, 2, 3, etc.. What is the marginal product of each additional worker?
% fixed capital level
K1 = 1;
[fprimeX0K1, L] = MPKdiscrete(K1);
K2 = 2;
[fprimeX0K2, L] = MPKdiscrete(K2);
K3 = 3;
[fprimeX0K3, L] = MPKdiscrete(K3);
% Graph
close all;
figure();
hold on;
plot(L, fprimeX0K1);
scatter(L, fprimeX0K1,'filled');
plot(L, fprimeX0K2);
scatter(L, fprimeX0K2,'filled');
plot(L, fprimeX0K3);
scatter(L, fprimeX0K3,'filled');
grid on;
ylabel('Marginal Output Increase from each Additional Worker (h=1)')
xlabel('L, previous/existing number of workers')
title('Discrete Labor Unit, Marginal Product of Each Worker')
legend(['k=',num2str(K1)], ['k=',num2str(K1)],...
['k=',num2str(K2)],['k=',num2str(K2)],...
['k=',num2str(K3)],['k=',num2str(K3)]);
function [fprimeX0, L] = MPKdiscrete(K)
% current labor level
L = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
% Cobb Douglas Production Parameters
alpha = 0.5;
beta = 1-alpha;
% Output at x0
fx0 = (K^alpha)*(L.^beta);
% a vector of h
h = 1;
% output at fx0plush
x0plush = L+h;
fx0plush = (K^alpha)*((x0plush).^beta);
% derivatie
fprimeX0 = (fx0plush - fx0)./h;
end